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Abstract  

This work shows that a certain class of classical dynamical formalisms, characterised by 
non-singular Lie structures more general than the usual (Poisson) one, are derivable from 
ordinary constrained dynamical formalisms. As a consequence, the Lie brackets con- 
sidered are special cases of suitably chosen Dirac brackets. Both unconstrained and 
constrained generalised dynamical formalisms are considered. The relations of our 
results with the problem of constructing classical analogues of generalised quantum 
systems are stressed. 

1. Introduction 

The important role that classical models have played in the development 
of the formal structure of the usual quantum theory is well known. In fact, 
when a classical analogue exists it already contains many of the properties 
of  its quantum partner. In this particular circumstance lies the heuristic 
importance of the quantisation schemes proposed since the origins of 
quantum mechanics by Dirac (1950, 1958, 1964), for Bose-like systems, 
and later enlarged by Droz-Vincent (1966) and Franke & K~ilnay (1970) 
to cover Fermi-like systems. Hopefully a similar situation may exist when 
dealing with quantum systems whose formal structure is more complex 
than that of the Bose or Fermi systems. We have in mind, for instance, 
Green's Parasystems. All this suggests the convenience of  studying the 
possibility of constructing classical analogues of  such general systems. By 
a classical analogue we mean here, as before, a classical model described 
by a set of  coordinates (analytic functions of time) where, besides the usual 
commutative product, a Lie product has been defined. This Lie product 
must (a) define, in the conventional way, the dynamics of the system and 
(b) through some quantisation rule reproduce the formal structure of the 
original quantum system. 
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Recently Kzilnay (1972) has given a step towards the solution of the 
program Sketched above for the generalised quantum systems to which 
increasing interest has been devoted in later years, i.e. the above-mentioned 
Green's Parasystems. In K~ilnay's work the Lie and Jordan products, 
through which the Green's trilinear algebra is defined, are realised classically 
by means of a skew-symmetric and a symmetric Dirac bracket respectively. 
This choice seems natural because (a) classical analogues of the Bose and 
Fermi type can be constructed with the aid of Dirac brackets (K~ilnay & 
Ruggeri, 1972; K~lnay, 1972), a fact which suggests its eventual relevance 
for Parasystems; and (b) Dirac brackets are the more general classical 
brackets which have been studied with some detail. There are no a priori 
reasons, however, for discarding some other types of Lie brackets in the 
description of classical analogues of Parasystems or even more general 
quantum systems. The aim of this and, hopefully, future works is to throw 
some light on the problem by choosing an approach which differs from 
that of K~ilnay. We study generalised dynamical formalisms and look for 
relations between them and ordinary constrained systems. For the latter 
the natural Lie structure is the Dirac bracket or some generalised form of 
it (Bergmann & Goldberg, 1955). 

After stating our notations and conventions we consider in Section 3 a 
restricted class of dynamical formalism which generalises the ordinary 
canonical one by replacing the Poisson bracket by a more general bracket. 
In Section 4 we analyse the new elements which arise when we introduce 
integrable constraints between the coordinates. In both cases we show that 
the generalised dynamical formalism can be embedded into an ordinary 
one with a double number of variables. The main results are summarised 
in Section 5. 

2. Notations and Conventions 

The name ordinary dynamical formalism will be given in this work to 
both the conventional Hamiltonian theory of classical mechanics and to 
the theory developed by Dirac (1950, 1964) to treat systems for which the 
phase-space variables are not independent. We call generalised dynamical 
formalisms those classical dynamical formalisms obtained from the 
ordinary ones by replacing the Poisson bracket by a more general Lie 
bracket which will be specified below in Section 3. 

Coordinates and Indices 
The canonical variables of the formalism will be denoted by ~ ,  where #, 

as any Greek index, takes the values 1, 2 . . . . .  2N. Also 
_ (~l, ~2 . . . . .  ~21v) (2.1) 

In Section 3 momenta canonically conjugated to ~" will be introduced; we 
use for it the symbol n,, and 

re ==- (hi, re2 . . . . .  n2N) (2.2) 
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The ordinary canonical formalism whose variables are {(~,rc)} will be 
called stretched formalism. The summation convention, as well as the 
abbreviations 0, = (0/a~ ~) and 0~ = (0/0rcu), will be used systematically. 

Brackets 

The bracket {, }_r denotes the Lie bracket defined by 

{F, (7}_ r = F u~ OuFO , G (2.3) 

The tensor {F u~} satisfies the relations (3.3) to (3.5). The bracket {,  }_a is 
the ordinary Poisson bracket of the stretched theory 

{ow, f#}_A = 0r ~- 0, ff _ 0, ~- 0, ff (2.4) 

and if, as any other script symbols, denote functions which take values 
in the phase space {(ce, n)}. 

The bracket {, }r* denotes the generalised Dirac bracket introduced in 
Section 4. {,  )a .  is the ordinary Dirac bracket of  the stretched theory. It 
is defined by: 

{~,  ~r = {~,  ~r _ {~,  0o}_a ~eob{0b, fa}_A (2.5) 

where {04; a = 1, 2 . . . . .  No} is the irreducible set of second-class constraints 
appropriate to each case. This set is such that: 

(~ab{Ob, Oe}_ A = (~a c (2.6) 
for all a and c. 

Finally, the square bracket [, ]_ will be reserved for the commutator. 

3. Unconstrained Generalised Dynamical Formalism 

By an unconstrained generalised dynamical formalism we mean a 
dynamical theory in which the state of the system is fully characterised by 
2N independent variables {~} (the canonical variables) which evolve in 
time according to 

~"  = { .~ ,  n } _  r (3.1) 

In these equations H (the Hamiltonian) is a function of the ~'s and the time, 
and {, } r  is the bracket defined bye" 

{F, a}_ r = F u~ O, FO~ a (3.2) 

for any pair of functions of the a's and also, eventually, the time. We will 
suppose that this bracket has the following properties: 

(a) It defines a Lie product in the space of (infinitely differentiable) 
functions of a. That is, the following relations hold: 

(a.1) Antisymmetry 
{F, G}_ r = -{ G, F}_ r (3.3) 

t The brackets defined by equations (3.2) to (3.5) have been considered frequently in 
the literature. See, for example, Martin (1959) and Mukunda & Sudarshan (1968). 
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(a.2) Jacobi Identi ty 

{F,{G,J}_r}_ r + {J,(F, G}_r}_ r + (G,(J,  F}_r}_ r = 0 (3.4) 

(b) It  is non-singular in the sense that  detUF"V]] # 0. The inverse matrix 
will be denoted by []Fuv][ : 

V,z F ~'v = a ,  ~ (3.5) 

Equations (3.3) and (3.4) are respectively equivalent to 

r " '  = - V  TM (3.6) 
and 

F ~" O. F "~ + F "  O. F ~ + F o" 3. F ~v = 0 (3.7) 

I t  is now easy to show that  equations (3.5) and (3.7) lead to 

3x F.v + 0~ Fx.  + O. F.x = 0 (3.8) 

This last relation shows the existence of  a (quasi)vector { f .}  such that  

r . .  = 0. f,, - 0. f .  (3.9) 

and which is obviously defined up to a gauge t ransformation 

f~ - + f ;  =f~  + 0. G (3.10) 

Equat ion (3.1) can now be shown to follow from a variational principle of  
the ordinary type (Martin, 1959). In fact by equations (3.2), (3.5) and (3.9) 
we can write equat ion (3.1) as 

( O . f ~ -  O~ f u ) ~ =  O,,H (3.11) 

These are just the Euler-Lagrange equations corresponding to the family 
of  Lagrangians 

cLG = fu ~'~ - H + dG/dt (3.12) 

where again G is arbi t rary. t  
Consider now the ordinary canonical formalism derived f rom 5e. The 

momentum conjugated to ~" is: 

7r.(c~, ~) ~- (0~/Oc~") (~, ~) =f . ( : t )  (3.13) 

and the Hamil tonian  
Jq'(c~, r 0 - ~" re. - s = H(e)  (3.14) 

Equat ion (3.13) shows the existence of  2N primary constraints$ 

Zu-~Tru--fu~,O #----- 1,2 . . . . .  2N (3.15) 

The canonical equations are then of  Dirac's  type, i.e. : 

~u = Ou ~ + A~ OuX~ (3.16a) 
- / c .  = 0. Of' + 2 v O~ Z~ (3.16b) 

1" The indeterminacies expressed by equations (3.10) and (3.12) are, of course, not 
independent. They are related to the possibility of performing canonical transformations 
with respect to the bracket {, }r .  In the following we shall take G = 0 and s = s 

:~ We follow the definitions and conventions established by Dirac (1964). 
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where the 2N 2's are additional variables. Due to equations (3.14), (3.15) 
and (3.16a) they coincide with the velocities 

2"=c~ v (3.17) 

By substitution of equations (3.13) and (3.17) into equation (3.16b) we 
recover equation (3.11) and then also equation (3.1). In this way a general- 
ised canonical formalism is embedded in an ordinary one by stretching the 
phase space of the system. We have now 4N variables instead of 2N but 
the number of independent ones is the same as before due to the con- 
straints of equations (3.15). 

There are no secondary constraints here, the consistence equations 
2~ ~ 0, # = 1, 2 . . . . .  2N, serving only to determine the 2's as in equation 
(3.17). 

The above results suggest the existence of a close relation between the 
algebraic structures naturally associated with the generalised formalism 
on the one hand and with the ordinary constrained formalism on the other. 
These structures are respectively defined by the brackets {, ) r  and ( ,  }a*. 
To show this relation, note first that each one of the Z's is second class 
because 

{Zu, Zv} -a = Ou fv -- Ov f~ = l-'~,v (3.18) 

Moreover, the set {Zu} is an irreducible set of constraints from which we 
can construct the Dirac bracket. Obviously we have (cf. equation (2.6)) 

c~,, = Fu, (3.19) 

Now take two functions F and G of ~. We have: 

(F, G}_ a --- 0; {F, Zu}_ A = 0~ F, etc. (3.20) 

and then equations (3.19), (3.20) and (2.5) lead us to 

{F, G}_ a* = Fuv OuFOvG = {F, G}_ r (3.21) 

This last equation shows that any non-singular Lie bracket of the type 
(3.2) is in fact deducible from an ordinary Dirac bracket. The corresponding 
set of irreducible second-class constraints is given by {Zu=-Tzu-fu; 

= 1, 2 . . . . .  2 u } . ~  
Let us make two remarks concerning the relations just found: 
(a) Equations (3.1) and (3.21) imply that for any function F of 

dF/dt = {V, H}_ a* (3.22) 

In the general case equation (3.22) must be written as (Dirac, 1964) 

dF]dt ~ {Y, H'}_ "~* (3.23) 

t Cawley (1969) has proved previously that the ordinary Hamiltonian theory can be 
deduced from a stretched Dirac theory and that the quantisation is unaltered if the 
Poisson bracket is replaced by the Dirac bracket. Some of our denominations and 
procedures were suggested by that work. 
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where H '  is the extended Hamiltonian in the sense of Dirac. The stronger 
version of equation (3.22) is a consequence of the very simple functional 
form of the constraints of the stretched formalism. 

(b) For the Bose-like quantisation procedure of systems described by a 
generalised dynamical formalism the following rule has been proposed as 
a natural extension of the ordinary (Dirac's) one (h = 1) 

i{, }_r ~ [, 1_ (3.24) 

By virtue of equation (3.21) this rule is a special case of the following one 
(Dirac, 1950, 1964) 

i{, }_* -+ [, ]_ (3.25) 

We stress the fact that in equations (3.24) and (3.25) brackets appear which 
are respectively associated to a generalised formalism and to an ordinary, 
but stretched, one. 

V. Constrained Generalised Dynamical Formalism 

The simplest extension of the ordinary Hamiltonian theory is obtained 
by assuming that a certain number of integrable constraints hold between 
the phase-space variables. The corresponding theory has been analysed in 
detail by Dirac (1950, 1964). This theory suggests that consideration be 
given to constrained generalised dynamical formalisms which are just 
characterised by the existence of, say, N1 a priori constraints 

r = 0 i =  1 . . . .  ,N1 (4.1a) 
written also as 

q~,~0 i = 1  . . . . .  N1 (4.1b) 

Following Dirac, the equations of motion are postulated to be given by 

~u = FUV(O~ H + u ~ Ov d?~) (4.2a) 

Here Fuv satisfies equations (3.5) to (3.7). Equation (4.2a) can also be 
written as 

d" = {a", H}_ r + u'{a", ~b,}_ r (4.2b) 

In equations (4.2) the u's are not determined apriori  but are necessary for 
a complete dynamical description. 

For the following considerations it is useful to summarise here the main 
aspects of a dynamical theory whose elements are equations (4.1) and (4.2). 
Let us follow Dirac's approach.) 

(i) Besides the primary constraints (4.1) other constraints, called 
secondary, may appear by elimination of the u's from the set of consistence 
equations qS~ ~ 0, i = 1 , . . . ,  N1, i.e., from 

{(o,, H}_ r + uS{~b,, ~ }  r ,~ 0 (4.3) 

t See, for instance, Dirac (1964). In the following we shall not prove any proposition 
for which the proofs given by Dirac are also valid here. 
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The new constraints must also satisfy consistence equations like equation 
(4.3) and so on. This procedure leads us finally to: 

(i(a)) A closed set of, say, Nc constraints which we denote by 
{TJ~,; m = 1 . . . . .  N1 . . . . .  Arc). 

(i(b)) Arc consistence equations. A subset of these equations permits one 
to obtain generally some of the u's, while the rest remains com- 
pletely arbitrary. 

(ii) The theory of constrained systems can also be formulated, in an 
equivalent form, in terms of non-singular linear combinations of the k~'s. 
By means of these combinations a new complete set of constraints 
{(~bp, 0a); a = 1, 2 . . . . .  No; p = 1 , . . . ,  (N~ - No)} can be constructed with 
the following properties 

(ii(a)) The $'s are Ff i r s t  class. This means that 

{~p, ~p,}_r ~ 0 for all p and p' (4.4a) 
and also 

{$p, Oa}_ r ~ 0 for all p and a (4.4b) 

(ii(b)) {0} is an irreducible set of F second-class constraints. This means 
that for any a there exists at least an a' such that 

{0a, 0a,}_ r ~ 0 (4.5) 

and, moreover, it is not possible to obtain a F first-class constraint 
by taking linear combinations of the O's. In this case, just as Dirac 
has proved, it can be shown that the matrix H{O,,Ob}_r[l is non- 
singular. Let us call Cr --[[ C~-b[] the inverse matrix: 

C~-b{Ob, 0~}_ r = 6% (4.6) 

(iii) The Lie bracket naturally associated to a constrained system with 
F second-class constraints is the Dirac bracket constructed from (,  } r ,  i.e. : 

{F, G}_ r* = {F, G}_ r - (F, 0,}_ r C~rb{Ob, G}_ r (4.7) 

This means, in particular, that when quantising our system according to 
the conventional scheme inconsistencies will be avoided if the rule 

i{, } r *  _+ [, 1_ (4.8) 

is used instead of the rule of equation (3.24). 
The dynamical equations (4.2) can now be shown to be also deducible 

from a variational principle. As can be expected, they are the Euler- 
Lagrange equations corresponding to the Lagrangians (3.12) with equations 
(4.1) as constraints and the u's as undetermined coefficients, i.e. : 

(bSY tO~") - d(O ~ /O~Oidt = u'(Or (4.9) 

As in the previous section, an ordinary canonical formalism can be con- 
structed from equation (4.9). We are led again to 

Z. - 7r. - f ~  ~ 0 (4.10) 

~t~(a, ~z) = H(a) (4.11) 
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AS we have here two sets of primary constraints: {4J} and {)~}, the Dirac 
equations are: 

4" = OJ' H + 2 v O~'Z~ + u ~ O~' q~ (4.12a) 

-r = Ou H + ~,v O~,Xv + u~ O~,gpi (4.12b) 

Consider now the consistence equations •, ~ 0 and q~i ~ 0. The first one is: 

{Z,, H} -a + 2v{X,, Xv} -a + u~{)~, ~bi} -A ~ 0 (4.13) 

which due to the relations 
{X,, H}-  a = - 0 ,  H (4.14a) 
(Z,, Z,)- A = F , ,  (4.14b) 

(x., ~,}_A =_0.  4, (4.14c) 
and to equations (3.5), is equivalent to: 

2~',~P'~(O~H+u~O,(9~) # = 1 , 2  . . . . .  2N (5.15) 

The original equations of motion are recovered by comparing equation (4.5) 
with equation (4.12a). Equation (4.15) shows that, as could be expected, 
the 2's are determined if the u's are. In order to restrict the u's we need the 
remaining consistence equations. As 

(~b,, H}_ A = {~b,, 4j}_ a = 0 (4.16a) 
we have simply: 

6, = ).u0u~b, ~ 0 i = 1  . . . .  ,Na (4.16b) 

Comparing finally equations (4.15) and (4.16b) we arrive at 

P'~(O~, O~ 0~ H + u s 0, q~, 0~ q~s) ~ 0 (4.17) 

which is equivalent to equation (4.3). 
In summary, the generalised dynamical theory described by any of 

equations (4.2) and the set of  N~ constraints { ~} is equivalent to an ordinary 
dynamical theory with the set of 2N + N~ constraints: 

{(gu, 7~) ;#  = 1,2 . . . . .  2 N ; m  = 1 . . . . .  Arc} (4.18) 

Let us examine the structure of the set (4.18). Due to equations (4.14b) and 
(4.14c) all constraints of that set are second class. Nevertheless, the set 
{(X, 7r)} is not irreducible as the following considerations show. Let us define 

~P,~ = 7tm + X~ F ~v 0~ ~,, ~ 0 m = 1 . . . . .  N~ (4.19) 

The results (4.20) below can be easily proved by using elementary properties 
of the Poisson bracket and equations (4.10), (4.14b) and (4.14c): 

{ ~/,~,, )~,}a ~ 0 (4.20a) 
{~ , ,  7J~}_a ~ {7',,, 7',}_ r m , n = l  . . . . .  N ~ ; # =  1,2 . . . . .  2N (4.20b) 

Equations (4.20) show that if gt is F first class (resp. F second class) then 
7 j' is first class (resp. second class) in the stretched formalism. Thus, by 
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means of the linear combinations (4.19) the ~ constraints are classified 
according to its character in the generalised formalism. 

Let {0} be an irreducible set of F second-class constraints and define the 
following set of 2N + No constraints: 

{~ i  . . . .  , ~ 2 m . . . ,  ~c2~+~o)} - {gl . . . . .  Zzm 0~ . . . . .  0}o } (4 .21 )  

This last one is an irreducible set of second-class constraints for the 
stretched formalism. To see this note that: 

{~u, ~v}_ a = F~v if 1 < u, v < 2N (4.22a) 

{~,, ~}_a = 0, if u < 2N and v > 2N or u > 2N and v < 2N (4.22b) 

{~,, ~v}_ A = {0~, 0~}_ v if  u, v > 2N (4.22c) 

on the phase space restricted by equation (4.10). It is now easy to verify 
that the (2N + No) x (2N + No) matrix 

cg= 0F O r (4.23) 

with F = IIr vll and Cr =--]]C~-b[I, satisfies: 

cg,,{r ~w}a = 6"w U, V, W = 1, 2 . . . . .  (2N + No) (4.24) 

The natural Lie bracket of the stretched formalism is the Dirac bracket of 
equation (2.5). I f  we restrict ourselves to functions of  the ~, we have: 

{F, G}_ a = 0 (4.25a) 

{F, ~,}_a _= 3u" O~ F if  u < 2N (4.25b) 
{ ~ u , F } _ A  = a t 6,-2N {Oa, F} -  A if u > 2N, etc. (4.25c) 

According to equations (4.23) and (4.25) we can write: 

{F, G}_ a~ = F ~ O, ro~ G - {F, 0'~}_ a C~.b{O[,, G}_ a (4.26) 

Furthermore, substituting the identities 

0.}_ = {F, 0~ + g~ / '~  ~ 0.}_ a {F, ' 

= { F , z . } _ A r " ~ o ~ O .  

= {F, 0,}_ r, etc. (4.27) 

into equation (4.26), we finally get: 

{F, G}_ a* = {F, G}_ r* (4.28) 

This last equation completes the proof  that a constrained generalised 
dynamical formalism can be embedded in an ordinary (Dirac type) 
stretched dynamical theory. In particular the extension of the usual pro- 
cedure of quantisation, expressed by equation (4.8), is again contained in 
Dirac's rule (3.25). 
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5. Summary and Discussion 

This work has been devoted to show the interrelations which exist 
between certain generalised dynamical formalisms and Dirac's theory for 
constrained systems. An interesting corollary is that certain non-singular 
Lie brackets are special cases of suitably chosen Dirac brackets. This fact 
suggests that this last structure is a convenient starting point for con- 
structing classical analogues of  quantum systems whose structure is more 
complex than the usual ones. As has been mentioned in the Introduction, 
this conjecture has been previously made by Kfilnay (1972) for the interesting 
case of  Green's Parasystems. In spite of  the partial success of  this approach, 
which is supported to some extent by our results, more general Lie structures 
must not be discarded a priori. Some of these may arise f rom the analysis 
of  some classes of  singular generalised dynamical formalisms.I" 

In the Parasystems case there is another problem to consider, which is 
the construction of  a classical Jordan algebra. In Kfilnay's work this was 
done by means of the symmetric Dirac bracket introduced previously by 
Franke & K~ilnay (1970). This approach can also be followed here, by 
introducing for instance a symmetric partner for the bracket (4.7). How- 
ever, it is not clear to the author that such classical realisations of  the 
Jordan algebra are to be considered as satisfactory if we want to preserve, 
at the classical level, some of the more simple properties of  quantum 
Parasystems.:~ 
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